Ashesh Jain
Director of Engineering
Lyft Self-Driving Program
Palo Alto, CA
asheshjain399@gmail.com
asheshjain@lyft.com
I am currently the Head of Perception at Lyft Self-Driving Program. My team is responsible for all on-vehicle perception capabilities of Lyft's Autonomous Vehicle. This incldues Computer Vision, 3D Perception, Tracking, Sensor Calibration, and the machine learning infrasturure to deploy real-time deep learned models on the vehicle platform. Prior to Lyft, I led the team for sensor fusion and 3D tracking for autonomous driving at Zoox.
In my academic life, I obtained PhD in Computer Science from Cornell University. I was a visiting research scholar at the Stanford AI Lab where I started the Brain4Cars and RoboBrain projects. I also have a Bachelors degree in Electrical Engineering from IIT Delhi.
News
My recent talk @Scale Conference on self-supervised learning for autonomous driving
网络加速器免 on self-supervised learning for Autonomous driving @Scale conference, October 2023
Blog post on sensor calibration for Autonomous Vehicle, August 2023
Lyft open sourced one of the largest 3D Perception and Prediction data set for Autonomous Vehicle, July 2023
Spotlight from Lyft on my journey, Feb 2023
One paper accepted to CVPR 2018.
Joined Lyft Self Driving Program, January 2018
Best student paper award at CVPR 2016 (Deep learning on spatio-temporal graphs)
PhD thesis, May 2016.
Structural-RNN accepted as an ORAL to CVPR 2016.
Our paper on sensory-fusion RNN-LSTM for driver activity anticipation is accepted to ICRA 2016
I recently gave talks at Oculus, University of Washington Seattle, Keynote at the ICCV workshop on Autonomous driving, BayLearn Symposium, Qualcomm, and Zoox Labs on: Deep Learning for Spatio-Temporal Problems: On Cars, Humans, and Robots (免费vpm全球网络加速器, 300MB) (pdf, 30MB)
Neuralmodels: A deep learning package for quick prototyping of structures of Recurrent Neural Networks and for deep learning over spatio-temporal graphs.
网络加速器下载 driving data set and sensory-fusion RNN code.
My research interest lies at the intersection of machine learning, robotics, and computer vision. Broadly, I build machine learning systems & algorithms for agents – such as robots, cars etc. – to learn from informative human signals at a large-scale. Most of my work has been in multi-modal sensor-rich robotic settings, for which I have developed sensory fusion deep learning architectures. I have developed and deployed algorithms on multiple robotic platforms (PR2, Baxter etc.), on cars, and crowd-sourcing systems.
Brain4Cars
RoboBrain
PlanIt
Learning From Natural Human Interactions For Assistive Robots
PhD Thesis, Ashesh Jain, May 2016 [PDF]
Brain4Cars: Car That Knows Before You Do via Sensory-Fusion Deep Learning Architecture
Ashesh Jain, Hema S Koppula, Shane Soh, Bharad Raghavan, Avi Singh, Ashutosh Saxena
Tech Report (under review), January 2016 [arXiv] [Code and Data set]
Learning Preferences for Manipulation Tasks from Online Coactive Feedback.
Ashesh Jain, Shikhar Sharma, Thorsten Joachims, Ashutosh Saxena
IJRR 2015 [PDF]
Structural-RNN: Deep Learning on Spatio-Temporal Graphs
Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena
CVPR 2016 (Full ORAL) (Best Student Paper) [PDF] [arXiv] [supplementary] [YouTube免费加速器] [网络加速器免费版]
Recurrent Neural Networks for Driver Activity Anticipation via Sensory-Fusion Architecture
Ashesh Jain, Avi Singh, Hema S Koppula, Shane Soh, Ashutosh Saxena
ICRA 2016 [PDF] [arXiv] [Code]
Car That Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models
学习贯彻落实习近平总书记重要讲话精神 三个“没有改变” 湖北 ...:2021-5-28 · 习近平总书记在参加湖北伋表团审议时表示,湖北经济长期向好的基本面没有改变,多年积累的综合优势没有改变,在国家和区域发展中的重要地位没有改变。这三个“没有改变”, 让湖北经济重振吃下了“定心丸”。那么,应该如何理解这三个“没有改变”呢?
ICCV 2015 [PDF] [Code and Data set] [arXiv]
Brain4Cars: Sensory-Fusion Recurrent Neural Models for Driver Activity Anticipation
Ashesh Jain, Shane Soh, Bharad Raghavan, Avi Singh, Hema S Koppula, Ashutosh Saxena
BayLearn Symposium 2015 [Extended abstract] (Full ORAL)
PlanIt: A Crowdsourcing Approach for Learning to Plan Paths from Large Scale Preference Feedback.
2021年中国互联网伋业100强榜单揭晓 - mofcom.gov.cn:8月14日,中国互联网协会、工业和信息化部网络安全产业发展中心(工业和信息化部信息中心)在2021年中国互联网伋业100强发布会暨百强伋业高峰论坛上联合发布了2021年中国互联网伋业100强榜单、互联网成长型伋业20强榜单和《2021年中国互联网伋业100强发展报告》。
ICRA 2015 [PDF]
学习贯彻落实习近平总书记重要讲话精神 三个“没有改变” 湖北 ...:2021-5-28 · 习近平总书记在参加湖北伋表团审议时表示,湖北经济长期向好的基本面没有改变,多年积累的综合优势没有改变,在国家和区域发展中的重要地位没有改变。这三个“没有改变”, 让湖北经济重振吃下了“定心丸”。那么,应该如何理解这三个“没有改变”呢?
Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K Misra, Hema S Koppula
ISRR 2015 [arXiv]
Anticipatory Planning for Human-Robot Teams.
Hema S Koppula, Ashesh Jain, Ashutosh Saxena
ISER 2014 [PDF]
Beyond Geometric Path Planning: Learning Context-Driven Trajectory Preferences via Sub-optimal Feedback.
Ashesh Jain, Shikhar Sharma, Ashutosh Saxena
ISRR 2013 [PDF]
Learning Trajectory Preferences for Manipulators via Iterative Improvement.
商务部:实物商品网络零售额对零售总额贡献率超37%-中国 ...:2021-6-7 · 高峰指出,当前,我国网络零售市场发展快速,实物商品网上零售额对社会消费品零售总额增长的贡献率超过了37%,对消费增长形成了强有力的拉动 ...
NIPS 2013 [PDF]
SPG-GMKL: Generalized multiple kernel learning with a million kernels.
Ashesh Jain, S. V. N. Vishwanathan, Manik Varma
SIGKDD 2012 [PDF | 网络加速器下载]
Brain4Cars: Sensory-fusion deep learning for smart-cars
Interactive human-robot learning from coactive feedback
Anticipating driver maneuvers few seconds in advance
中国核工业从这里走来——来自中核集团中国原子能科学研究 ...:2021-4-25 · 新华社北京4月24日电 题:中国核工业从这里走来——来自中核集团中国原子能科学研究院的蹲点报告新华社记者高敬、安娜北京西南郊区,有一个看上去不怎么起眼的小镇——新镇,60多年前因核 …
Invited talk at Oculus (Facebook), April 2016
Keynote at the ICCV workshop on Autonomous driving. Title: 南京未来科技城定制云资源免费 - CRI:2021-6-25 · 原标题:一朵“云”助力千余伋业腾飞 南京未来科技城定制云资源免费服务入园伋业 针对园区伋业需求,“内部”定制云资源,同时积极发挥园区综合协调作用,伍“店小二”式服 Dec 2015
Invited talk at Zoox Labs (autonomous driving startup), Dec 2015
在火星上制造氧气或成现实-国际科技新闻-国际科技频道:2021-5-30 · 据美国太空网28日报道,美国科学家通过研究彗星如何产生氧分子,设计出了一个反应器,在其中,他伊用二氧化碳(CO2)撞击金箔,获得了氧气。他伊表示,新技术有望助力未来载人火星探索。
电影《奔跑的少年》10月7日腾讯上线 四大看点燃动逐梦之魂 ...:2021-9-29 · 网络卡顿还想玩游戏?腾讯网游加速器新推路由器加 囊括出行玩乐全攻略,腾讯地图这样陪你过十一 微电影《头条里的青春中国》 重温燃情岁月,中建一局五公司组织观看《决胜时刻 腾讯99公益日,俊平大魔王用爱为“小朋友画廊”增
Oral at BayLearn 2015 on Brain4Cars: Sensory-fusion Recurrent Neural Networks (Video)
Invited Talk at RSS Workshop on Model Learning for Human-Robot Communication, July 2015
成都新经济产品推动数字化转型提高伋业免“疫”力:2021-3-30 · 国内统一刊号:CN51-0004 成都日报社出版 党报热线:962211 广告热线:86623932 订阅热线:86511231
Invited Talk at ICRA Tutorial on Planning, Control, and Sensing for Safe Human-Robot Interaction, May 2015
Invited Talk at IIT Kanpur Department of Computer Science. RoboBrain and Learning from Weak Signals, Feb 2015
Stanford Semantics and Geometry Seminar. RoboBrain and Learning from Weak Signals, Feb 2015
Stanford Robotics Seminar. Learning from Weak Signals, Nov 2014
Introductory talk at LPCHS workshop RSS 2014. Learning from Humans. (Slides)
Cornell AI Seminar and ISRR 2013. Beyond Geometric Path Planning. (免费加速器上网)
ICML Robot Learning workshop 2013. (Slides)
Oral at SIGKDD 2012. (Video) (Slides)
Invited spotlight at Mysore Park Workshop on Machine Learning 2012. (Video) (Slides)
Lecture at Indo-German Winter Acadmey 2010. (Slides)